

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

	Cours	e Syllabus	
Course Code	Course Name	Credits	Contact Hours
0401521	Digital Communications	3	3Т

INSTRUCTOR/C	COORDINATOR
Name	Dr. Aser M. Matarneh
Email	aser.matarneh@mutah.edu.jo
Office Hours	10:00-11:00 (Sun, Tues, Thur)
Classroom/Time	

ТЕХТВООК	
Title	B. Sklar, Digital Communications: Fundamentals and Applications, Prentice Hall.
Author/Year/Edition	Senior, J. M
Other Supplemental Ma	iterials
Title	J. Proakis, Digital Communications, McGraw-Hill
Author/Year/Edition	J. Proakis

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

The content of "Digital Communication Systems" represents the basic knowledge necessary for sampling, encoding, transmitting, receiving, decoding and conversion of digital information using today's digital communication technologies. This course will cover random signals/noise, spectral analysis, information theory, sampling theory, encoding/decoding and digital signal modulation/demodulation. Matched filtering and quadrature detection for binary demodulation will be studied. Sampling theory will cover impulse and flat top sampling techniques.

The modulation techniques covered will include On/Off Keying (OOK), Phase Shift Keying (PSK), Frequency Shift Keying (FSK), and quadrature modulation and demodulation (QAM). Information theory will include topics of Channel Capacity, Entropy, and be applied to encoding/decoding techniques. Finally, system error will be conducted.

B. Pre-requisites (P) or Co-requisites (C)

Communications (2) (0401422) (P)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

<u>CLO 1</u>: Understand sampling theorem, quantization, and pulse code modulation [1].

<u>CLO 2</u>: Recognize the digital modulation techniques [1].

CLO 3: Demonstrate digital demodulation and Detection [1].

CLO 4: Explain equalization and matched filters [1].

<u>CLO 5</u>: Apply system error performance [1].

B. Student Learning Outcomes (SOs) Addressed by the Course

1	2	3	4	5	6	7
✓						

BRIEF LIST OF TOPICS TO BE COVERED		
List of Topics	No. of Weeks	Contact Hours
Related Background		
• Signals and systems		
Probability and random processes	1	3
General structure of a communication system		
Why "digital" instead of "analog"?		
Classification of signals		
Power and energy spectral densities	1	3
Autocorrelation	1	5
Noise in communication systems		
Sampling and quantization techniques		
• The Sampling Theorem and Nyquist theorem		
• Aliasing		
• Why Oversample?		
Signal Interface for a Digital System	4	12
Sources of Corruption		12
Sampling and Quantizing Effects		
Channel Effects		
Signal-to-Noise Ratio for Quantized Pulses		
Pulse Code Modulation		
Digital Bandpass Modulation Techniques		
Phasor Representation of a Sinusoid		
Phase Shift Keying		
Frequency Shift Keying	3	9
Amplitude Shift Keying		
Differential Modulations		
Quadrature Amplitude Shift keying		

Baseband Demodulation/ Detection		
Error-Performance Degradation in Communication Systems		
Demodulation and Detection		
The Basic SNR Parameter for Digital Communication Systems	C	6
• Why E _b /N ₀ Is a Natural Figure of Merit	2	0
Detection of Signals in Gaussian Noise		
Intersymbol Interference		
Equalization		
Coherent Detection	1	3
Noncoherent Detection	1	5
Error Performance for Binary Systems		
• Symbol Error Performance for M-ary Systems (M > 2)	2	6
Introduction to channel coding.		
Total	14	42

EVALUATION		
Assessment Tool	Due Date	Weight (%)
Mid Exam	According to the university calendar	30
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20
Final Exam	According to the university calendar	50

		ABET's Students Learning Outcomes (Criterion # 3)	
	Relationship to program outcomes		
ABET 1-7		Engineering Student Outcomes	
1		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	
2		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	
3		an ability to communicate effectively with a range of audiences.	
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	

6	an ability to develop and conduct appropriate experimentation, analyze and interpret
0	data, and use engineering judgment to draw conclusions.
7	an ability to acquire and apply new knowledge as needed, using appropriate learning
	strategies.